Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.081
1.
Mol Biomed ; 5(1): 17, 2024 May 10.
Article En | MEDLINE | ID: mdl-38724687

Uveal cancer (UM) offers a complex molecular landscape characterized by substantial heterogeneity, both on the genetic and epigenetic levels. This heterogeneity plays a critical position in shaping the behavior and response to therapy for this uncommon ocular malignancy. Targeted treatments with gene-specific therapeutic molecules may prove useful in overcoming radiation resistance, however, the diverse molecular makeups of UM call for a patient-specific approach in therapy procedures. We need to understand the intricate molecular landscape of UM to develop targeted treatments customized to each patient's specific genetic mutations. One of the promising approaches is using liquid biopsies, such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), for detecting and monitoring the disease at the early stages. These non-invasive methods can help us identify the most effective treatment strategies for each patient. Single-cellular is a brand-new analysis platform that gives treasured insights into diagnosis, prognosis, and remedy. The incorporation of this data with known clinical and genomics information will give a better understanding of the complicated molecular mechanisms that UM diseases exploit. In this review, we focused on the heterogeneity and molecular panorama of UM, and to achieve this goal, the authors conducted an exhaustive literature evaluation spanning 1998 to 2023, using keywords like "uveal melanoma, "heterogeneity". "Targeted therapies"," "CTCs," and "single-cellular analysis".


Genetic Heterogeneity , Melanoma , Molecular Targeted Therapy , Uveal Neoplasms , Humans , Melanoma/genetics , Melanoma/pathology , Melanoma/therapy , Melanoma/drug therapy , Molecular Targeted Therapy/methods , Uveal Neoplasms/genetics , Uveal Neoplasms/therapy , Uveal Neoplasms/pathology , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Biomarkers, Tumor/genetics , Mutation , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Liquid Biopsy/methods
2.
JAMA Netw Open ; 7(5): e2410171, 2024 May 01.
Article En | MEDLINE | ID: mdl-38713467

This cross-sectional study evaluates the information on a circulating tumor DNA test available to the public on popular internet resources.


Access to Information , Humans , Liquid Biopsy/methods , Female , Male , Middle Aged
3.
Sci Rep ; 14(1): 10199, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702437

In pancreatic ductal adenocarcinoma (PDAC) patients, the importance of peritoneal lavage cytology, which indicates unresectability, remains controversial. This study sought to determine whether positive peritoneal lavage cytology (CY+) precludes pancreatectomy. Furthermore, we propose a novel liquid biopsy using peritoneal lavage fluid to detect viable peritoneal tumor cells (v-PTCs) with TelomeScan F35, a telomerase-specific replication-selective adenovirus engineered to express green fluorescent protein. Resectable cytologically or histologically proven PDAC patients (n = 53) were enrolled. CY was conducted immediately following laparotomy. The resulting fluid was examined by conventional cytology (conv-CY; Papanicolaou staining and MOC-31 immunostaining) and by the novel technique (Telo-CY; using TelomeScan F35). Of them, 5 and 12 were conv-CY+ and Telo-CY+, respectively. All underwent pancreatectomy. The two double-CY+ (conv-CY+ and Telo-CY+) patients showed early peritoneal recurrence (P-rec) postoperatively, despite adjuvant chemotherapy. None of the three conv-CY+ Telo-CY- patients exhibited P-rec. Six of the 10 Telo-CY+ conv-CY- patients (60%) relapsed with P-rec. Of the remaining 38 double-CY- [conv-CY-, Telo-CY-, conv-CY± (Class III)] patients, 3 (8.3%) exhibited P-rec. Although conv-CY+ status predicted poor prognosis and a higher risk of P-rec, Telo-CY was more sensitive for detecting v-PTC. Staging laparoscopy and performing conv-CY and Telo-CY are needed to confirm the indication for pancreatectomy.


Carcinoma, Pancreatic Ductal , Pancreatectomy , Pancreatic Neoplasms , Peritoneal Lavage , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/surgery , Male , Female , Aged , Middle Aged , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/diagnosis , Cytodiagnosis/methods , Aged, 80 and over , Neoplasm Recurrence, Local/pathology , Liquid Biopsy/methods , Peritoneal Neoplasms/pathology , Peritoneal Neoplasms/diagnosis , Adult , Cytology
4.
Anal Chim Acta ; 1308: 342578, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38740462

Cancer is one of the serious threats to public life and health. Early diagnosis, real-time monitoring, and individualized treatment are the keys to improve the survival rate and prolong the survival time of cancer patients. Liquid biopsy is a potential technique for cancer early diagnosis due to its non-invasive and continuous monitoring properties. However, most current liquid biopsy techniques lack the ability to detect cancers at the early stage. Therefore, effective detection of a variety of cancers is expected through the combination of various techniques. Recently, DNA frameworks with tailorable functionality and precise addressability have attracted wide spread attention in biomedical applications, especially in detecting cancer biomarkers such as circulating tumor cells (CTCs), exosomes and circulating tumor nucleic acid (ctNA). Encouragingly, DNA frameworks perform outstanding in detecting these cancer markers, but also face some challenges and opportunities. In this review, we first briefly introduced the development of DNA frameworks and its typical structural characteristics and advantages. Then, we mainly focus on the recent progress of DNA frameworks in detecting commonly used cancer markers in liquid-biopsy. We summarize the advantages and applications of DNA frameworks for detecting CTCs, exosomes and ctNA. Furthermore, we provide an outlook on the possible opportunities and challenges for exploiting the structural advantages of DNA frameworks in the field of cancer diagnosis. Finally, we envision the marriage of DNA frameworks with other emerging materials and technologies to develop the next generation of disease diagnostic biosensors.


DNA , Neoplasms , Liquid Biopsy/methods , Humans , DNA/chemistry , Neoplasms/diagnosis , Neoplasms/pathology , Biomarkers, Tumor/analysis , Neoplastic Cells, Circulating/pathology , Circulating Tumor DNA/blood , Circulating Tumor DNA/analysis , Exosomes/chemistry
5.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732099

Medulloblastoma is the most common malignant brain tumor in childhood. Initial treatment generally includes surgery, irradiation, and chemotherapy. Approximately 20-30% of patients will experience a recurrence, which portends a very poor prognosis. The current standard of care for evaluation for relapse includes radiographic surveillance with magnetic resonance imaging at regular intervals. The presence of circulating tumor DNA in the cerebrospinal fluid has been demonstrated to be a predictor of a higher risk of progression in a research setting for patients with medulloblastoma treated on a prospective single institution clinical trial. We have previously published and clinically validated a liquid-biopsy-based genetic assay utilizing low-pass whole genome sequencing to detect copy number alterations in circulating tumor DNA. Here, we present two teenage patients with posterior fossa medulloblastoma with recurrent disease who have been monitored with serial liquid biopsies showing tumor evolution over time, demonstrating the clinical utility of these approaches.


Cerebellar Neoplasms , Medulloblastoma , Neoplasm Recurrence, Local , Humans , Medulloblastoma/cerebrospinal fluid , Medulloblastoma/genetics , Medulloblastoma/diagnosis , Medulloblastoma/pathology , Medulloblastoma/diagnostic imaging , Liquid Biopsy/methods , Neoplasm Recurrence, Local/cerebrospinal fluid , Neoplasm Recurrence, Local/genetics , Adolescent , Cerebellar Neoplasms/cerebrospinal fluid , Cerebellar Neoplasms/diagnosis , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/genetics , Male , Circulating Tumor DNA/cerebrospinal fluid , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Female , Disease Progression , Magnetic Resonance Imaging
6.
Aging (Albany NY) ; 16(8): 7487-7504, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38683118

Metabolomics is a rapidly expanding field in systems biology used to measure alterations of metabolites and identify metabolic biomarkers in response to disease processes. The discovery of metabolic biomarkers can improve early diagnosis, prognostic prediction, and therapeutic intervention for cancers. However, there are currently no databases that provide a comprehensive evaluation of the relationship between metabolites and cancer processes. In this review, we summarize reported metabolites in body fluids across pan-cancers and characterize their clinical applications in liquid biopsy. We conducted a search for metabolic biomarkers using the keywords ("metabolomics" OR "metabolite") AND "cancer" in PubMed. Of the 22,254 articles retrieved, 792 were deemed potentially relevant for further review. Ultimately, we included data from 573,300 samples and 17,083 metabolic biomarkers. We collected information on cancer types, sample size, the human metabolome database (HMDB) ID, metabolic pathway, area under the curve (AUC), sensitivity and specificity of metabolites, sample source, detection method, and clinical features were collected. Finally, we developed a user-friendly online database, the Human Cancer Metabolic Markers Database (HCMMD), which allows users to query, browse, and download metabolite information. In conclusion, HCMMD provides an important resource to assist researchers in reviewing metabolic biomarkers for diagnosis and progression of cancers.


Biomarkers, Tumor , Body Fluids , Metabolomics , Neoplasms , Humans , Neoplasms/metabolism , Neoplasms/diagnosis , Biomarkers, Tumor/metabolism , Liquid Biopsy/methods , Metabolomics/methods , Body Fluids/metabolism , Databases, Factual , Metabolome
7.
Prostate ; 84(9): 850-865, 2024 Jun.
Article En | MEDLINE | ID: mdl-38571290

INTRODUCTION: We describe the development of a molecular assay from publicly available tumor tissue mRNA databases using machine learning and present preliminary evidence of functionality as a diagnostic and monitoring tool for prostate cancer (PCa) in whole blood. MATERIALS AND METHODS: We assessed 1055 PCas (public microarray data sets) to identify putative mRNA biomarkers. Specificity was confirmed against 32 different solid and hematological cancers from The Cancer Genome Atlas (n = 10,990). This defined a 27-gene panel which was validated by qPCR in 50 histologically confirmed PCa surgical specimens and matched blood. An ensemble classifier (Random Forest, Support Vector Machines, XGBoost) was trained in age-matched PCas (n = 294), and in 72 controls and 64 BPH. Classifier performance was validated in two independent sets (n = 263 PCas; n = 99 controls). We assessed the panel as a postoperative disease monitor in a radical prostatectomy cohort (RPC: n = 47). RESULTS: A PCa-specific 27-gene panel was identified. Matched blood and tumor gene expression levels were concordant (r = 0.72, p < 0.0001). The ensemble classifier ("PROSTest") was scaled 0%-100% and the industry-standard operating point of ≥50% used to define a PCa. Using this, the PROSTest exhibited an 85% sensitivity and 95% specificity for PCa versus controls. In two independent sets, the metrics were 92%-95% sensitivity and 100% specificity. In the RPCs (n = 47), PROSTest scores decreased from 72% ± 7% to 33% ± 16% (p < 0.0001, Mann-Whitney test). PROSTest was 26% ± 8% in 37 with normal postoperative PSA levels (<0.1 ng/mL). In 10 with elevated postoperative PSA, PROSTest was 60% ± 4%. CONCLUSION: A 27-gene whole blood signature for PCa is concordant with tissue mRNA levels. Measuring blood expression provides a minimally invasive genomic tool that may facilitate prostate cancer management.


Biomarkers, Tumor , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/blood , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , Liquid Biopsy/methods , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Aged , Middle Aged , Machine Learning , RNA, Messenger/blood , RNA, Messenger/genetics , Prostatectomy , Sensitivity and Specificity
8.
Brain Tumor Pathol ; 41(2): 85-91, 2024 Apr.
Article En | MEDLINE | ID: mdl-38597999

Surgical biopsy is the gold standard for diagnosing central nervous system (CNS) lymphomas. However, reliable liquid biopsy methods for diagnosing CNS lymphomas have quickly developed and have been implicated in clinical decision-making. In the current report, we introduce two patients for whom liquid biopsy was essential for diagnosing CNS lymphomas and discuss the rapidly growing applications of this technology.


Central Nervous System Neoplasms , Aged , Female , Humans , Male , Central Nervous System Neoplasms/diagnosis , Central Nervous System Neoplasms/pathology , Liquid Biopsy/methods , Lymphoma/diagnosis , Lymphoma/pathology
9.
Int J Cancer ; 155(2): 298-313, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38602058

Treatment resistance remains a major issue in aggressive prostate cancer (PC), and novel genomic biomarkers may guide better treatment selection. Circulating tumor DNA (ctDNA) can provide minimally invasive information about tumor genomes, but the genomic landscape of aggressive PC based on whole-genome sequencing (WGS) of ctDNA remains incompletely characterized. Thus, we here performed WGS of tumor tissue (n = 31) or plasma ctDNA (n = 10) from a total of 41 aggressive PC patients, including 11 hormone-naïve, 15 hormone-sensitive, and 15 castration-resistant patients. Across all variant types, we found progressively more altered tumor genomic profiles in later stages of aggressive PC. The potential driver genes most frequently affected by single-nucleotide variants or insertions/deletions included the known PC-related genes TP53, CDK12, and PTEN and the novel genes COL13A1, KCNH3, and SENP3. Etiologically, aggressive PC was associated with age-related and DNA repair-related mutational signatures. Copy number variants most frequently affected 14q11.2 and 8p21.2, where no well-recognized PC-related genes are located, and also frequently affected regions near the known PC-related genes MYC, AR, TP53, PTEN, and BRCA1. Structural variants most frequently involved not only the known PC-related genes TMPRSS2 and ERG but also the less extensively studied gene in this context, PTPRD. Finally, clinically actionable variants were detected throughout all stages of aggressive PC and in both plasma and tissue samples, emphasizing the potential clinical applicability of WGS of minimally invasive plasma samples. Overall, our study highlights the feasibility of using liquid biopsies for comprehensive genomic characterization as an alternative to tissue biopsies in advanced/aggressive PC.


Biomarkers, Tumor , Circulating Tumor DNA , Prostatic Neoplasms , Whole Genome Sequencing , Humans , Male , Whole Genome Sequencing/methods , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Aged , Liquid Biopsy/methods , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Middle Aged , Biomarkers, Tumor/genetics , DNA Copy Number Variations , Mutation , Aged, 80 and over , Genomics/methods
10.
Indian J Med Res ; 159(2): 163-180, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38577857

ABSTRACT: From an initial thought of being used as a cellular garbage bin to a promising target for liquid biopsies, the role of exosomes has drastically evolved in just a few years of their discovery in 1983. Exosomes are naturally secreted nano-sized vesicles, abundant in all types of body fluids and can be isolated intact even from the stored biological samples. Being stable carriers of genetic material (cellular DNA, mRNA and miRNA) and having specific cargo (signature content of originating cells), exosomes play a crucial role in pathogenesis and have been identified as a novel source of biomarkers in a variety of disease conditions. Recently exosomes have emerged as a promising 'liquid biopsy tool'and have shown great potential in the field of non-invasive disease diagnostics, prognostics and treatment response monitoring in both communicable as well as non-communicable diseases. However, there are certain limitations to overcome which restrict the use of exosome-based liquid biopsy as a gold standard testing procedure in routine clinical practices. The present review summarizes the current knowledge on the role of exosomes as the liquid biopsy tool in diagnosis, prognosis and treatment response monitoring in communicable and non-communicable diseases and highlights the major limitations, technical advancements and future prospects of the utilization of exosome-based liquid biopsy in clinical interventions.


Exosomes , Noncommunicable Diseases , Humans , Exosomes/genetics , Exosomes/pathology , Liquid Biopsy/methods , Prognosis , Biomarkers
11.
Zhonghua Yi Xue Za Zhi ; 104(16): 1337-1340, 2024 Apr 23.
Article Zh | MEDLINE | ID: mdl-38644279

Peritoneal metastasis is the common route of metastasis in gastric cancer and is a major cause of death in advanced gastric cancer. Early intervention with comprehensive treatment can effectively improve the prognosis of some patients with peritoneal metastasis. However, early peritoneal metastasis in gastric cancer is predominantly micro-metastasis, which cannot be effectively evaluated by imaging studies. Moreover, the detection of disseminated cancer cells in peritoneal lavage suffers from a low detection rate and significant heterogeneity. In recent years, the development and application of new liquid biopsy technologies such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) have provided new means to assess potential peritoneal metastasis at the cellular and molecular levels, gradually becoming research hotspots in this field. This review will summarize the relevant progress of liquid biopsy in peritoneal metastasis, which holds significant importance for improving the prognosis of gastric cancer patients in China.


Circulating Tumor DNA , Neoplastic Cells, Circulating , Peritoneal Neoplasms , Stomach Neoplasms , Stomach Neoplasms/pathology , Stomach Neoplasms/diagnosis , Humans , Liquid Biopsy/methods , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/therapy , Peritoneal Neoplasms/diagnosis , Prognosis
12.
Mol Cancer ; 23(1): 67, 2024 04 01.
Article En | MEDLINE | ID: mdl-38561768

Gastrointestinal cancer (GIC) is the most prevalent and highly metastatic malignant tumor and has a significant impact on mortality rates. Nevertheless, the swift advancement of contemporary technology has not seamlessly aligned with the evolution of detection methodologies, resulting in a deficit of innovative and efficient clinical assays for GIC. Given that exosomes are preferentially released by a myriad of cellular entities, predominantly originating from neoplastic cells, this confers exosomes with a composition enriched in cancer-specific constituents. Furthermore, exosomes exhibit ubiquitous presence across diverse biological fluids, endowing them with the inherent advantages of non-invasiveness, real-time monitoring, and tumor specificity. The unparalleled advantages inherent in exosomes render them as an ideal liquid biopsy biomarker for early diagnosis, prognosticating the potential development of GIC metastasis.In this review, we summarized the latest research progress and possible potential targets on cancer-derived exosomes (CDEs) in GIC with an emphasis on the mechanisms of exosome promoting cancer metastasis, highlighting the potential roles of CDEs as the biomarker and treatment in metastatic GIC.


Exosomes , Gastrointestinal Neoplasms , Humans , Exosomes/pathology , Biomarkers, Tumor , Biomarkers , Gastrointestinal Neoplasms/diagnosis , Gastrointestinal Neoplasms/pathology , Liquid Biopsy/methods
13.
J Exp Clin Cancer Res ; 43(1): 96, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561776

Lung cancer stands as the most prevalent form of cancer globally, posing a significant threat to human well-being. Due to the lack of effective and accurate early diagnostic methods, many patients are diagnosed with advanced lung cancer. Although surgical resection is still a potential means of eradicating lung cancer, patients with advanced lung cancer usually miss the best chance for surgical treatment, and even after surgical resection patients may still experience tumor recurrence. Additionally, chemotherapy, the mainstay of treatment for patients with advanced lung cancer, has the potential to be chemo-resistant, resulting in poor clinical outcomes. The emergence of liquid biopsies has garnered considerable attention owing to their noninvasive nature and the ability for continuous sampling. Technological advancements have propelled circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), extracellular vesicles (EVs), tumor metabolites, tumor-educated platelets (TEPs), and tumor-associated antigens (TAA) to the forefront as key liquid biopsy biomarkers, demonstrating intriguing and encouraging results for early diagnosis and prognostic evaluation of lung cancer. This review provides an overview of molecular biomarkers and assays utilized in liquid biopsies for lung cancer, encompassing CTCs, ctDNA, non-coding RNA (ncRNA), EVs, tumor metabolites, TAAs and TEPs. Furthermore, we expound on the practical applications of liquid biopsies, including early diagnosis, treatment response monitoring, prognostic evaluation, and recurrence monitoring in the context of lung cancer.


Lung Neoplasms , Neoplastic Cells, Circulating , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Biomarkers, Tumor/analysis , Neoplasm Recurrence, Local , Liquid Biopsy/methods , Prognosis , Neoplastic Cells, Circulating/metabolism
14.
World J Gastroenterol ; 30(15): 2175-2178, 2024 Apr 21.
Article En | MEDLINE | ID: mdl-38681986

With the rapid development of science and technology, cell-free DNA (cfDNA) is rapidly becoming an important biomarker for tumor diagnosis, monitoring and prognosis, and this cfDNA-based liquid biopsy technology has great potential to become an important part of precision medicine. cfDNA is the total amount of free DNA in the systemic circulation, including DNA fragments derived from tumor cells and all other somatic cells. Tumor cells release fragments of DNA into the bloodstream, and this source of cfDNA is called circulating tumor DNA (ctDNA). cfDNA detection has become a major focus in the field of tumor research in recent years, which provides a new opportunity for non-invasive diagnosis and prognosis of cancer. In this paper, we discuss the limitations of the study on the origin and dynamics analysis of ctDNA, and how to solve these problems in the future. Although the future faces major challenges, it also contains great potential.


Biomarkers, Tumor , Circulating Tumor DNA , Neoplasms , Humans , Liquid Biopsy/methods , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Neoplasms/blood , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/pathology , Prognosis , Precision Medicine/methods , Cell-Free Nucleic Acids/blood
15.
Biomolecules ; 14(4)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38672414

Small-cell lung cancer (SCLC) cases represent approximately 15% of all lung cancer cases, remaining a recalcitrant malignancy with poor survival and few treatment options. In the last few years, the addition of immunotherapy to chemotherapy improved clinical outcomes compared to chemotherapy alone, resulting in the current standard of care for SCLC. However, the advantage of immunotherapy only applies to a few SCLC patients, and predictive biomarkers selection are lacking for SCLC. In particular, due to some features of SCLC, such as high heterogeneity, elevated cell plasticity, and low-quality tissue samples, SCLC biopsies cannot be used as biomarkers. Therefore, the characterization of the tumor and, subsequently, the selection of an appropriate therapeutic combination may benefit greatly from liquid biopsy. Soluble factors, circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and extracellular vesicles (EVs) are now useful tools in the characterization of SCLC. This review summarizes the most recent data on biomarkers detectable with liquid biopsy, emphasizing their role in supporting tumor detection and their potential role in SCLC treatment choice.


Biomarkers, Tumor , Immunotherapy , Lung Neoplasms , Neoplastic Cells, Circulating , Small Cell Lung Carcinoma , Humans , Liquid Biopsy/methods , Small Cell Lung Carcinoma/therapy , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/immunology , Small Cell Lung Carcinoma/diagnosis , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Lung Neoplasms/diagnosis , Immunotherapy/methods , Biomarkers, Tumor/metabolism , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Circulating Tumor DNA/blood , Extracellular Vesicles/metabolism
16.
Biomolecules ; 14(4)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38672504

Extrachromosomal circular DNA (eccDNA), a double-stranded circular DNA molecule found in multiple organisms, has garnered an increasing amount of attention in recent years due to its close association with the initiation, malignant progression, and heterogeneous evolution of cancer. The presence of eccDNA in serum assists in non-invasive tumor diagnosis as a biomarker that can be assessed via liquid biopsies. Furthermore, the specific expression patterns of eccDNA provide new insights into personalized cancer therapy. EccDNA plays a pivotal role in tumorigenesis, development, diagnosis, and treatment. In this review, we comprehensively outline the research trajectory of eccDNA, discuss its role as a diagnostic and prognostic biomarker, and elucidate its regulatory mechanisms in cancer. In particular, we emphasize the potential application value of eccDNA in cancer diagnosis and treatment and anticipate the development of novel tumor diagnosis strategies based on serum eccDNA in the future.


Biomarkers, Tumor , DNA, Circular , Neoplasms , Humans , DNA, Circular/blood , DNA, Circular/genetics , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Neoplasms/blood , Neoplasms/genetics , Neoplasms/diagnosis , Prognosis , Liquid Biopsy/methods
17.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38673779

Meningiomas are tumors of the central nervous system that vary in their presentation, ranging from benign and slow-growing to highly aggressive. The standard method for diagnosing and classifying meningiomas involves invasive surgery and can fail to provide accurate prognostic information. Liquid biopsy methods, which exploit circulating tumor biomarkers such as DNA, extracellular vesicles, micro-RNA, proteins, and more, offer a non-invasive and dynamic approach for tumor classification, prognostication, and evaluating treatment response. Currently, a clinically approved liquid biopsy test for meningiomas does not exist. This review provides a discussion of current research and the challenges of implementing liquid biopsy techniques for advancing meningioma patient care.


Biomarkers, Tumor , Meningeal Neoplasms , Meningioma , Humans , Meningioma/diagnosis , Meningioma/pathology , Liquid Biopsy/methods , Meningeal Neoplasms/diagnosis , Meningeal Neoplasms/pathology , Extracellular Vesicles/metabolism , Prognosis
18.
Anal Chim Acta ; 1302: 342473, 2024 May 08.
Article En | MEDLINE | ID: mdl-38580402

In the medical field, extracellular vesicles (EVs) are gaining importance as they act as cells mediators. These are phospholipid bilayer vesicles and contain crucial biochemical information about their mother cells being carrier of different biomolecules such as small molecules, proteins, lipids, and nucleic acids. After release into the extracellular matrix, they enter the systemic circulation and can be found in all human biofluids. Since EVs reflect the state of the cell of origin, there is exponential attention as potential source of new circulating biomarkers for liquid biopsy. The use of EVs in clinical practice faces several challenges that need to be addressed: these include the standardization of lysis protocols, the availability of low-cost reagents and the development of analytical tools capable of detecting biomarkers. The process of lysis is a crucial step that can impact all subsequent analyses, towards the development of novel analytical strategies. To aid researchers to support the evolution of measurement science technology, this tutorial review evaluates and discuss the most commonly protocols used to characterize the contents of EVs, including their advantages and disadvantages in terms of experimental procedures, time and equipment. The purpose of this tutorial review is to offer practical guide to researchers which are intended to develop novel analytical approaches. Some of the most significant applications are considered, highlighting their main characteristics divided per mechanism of action. Finally, comprehensive tables which provide an overview at a glance are provided to readers.


Extracellular Vesicles , Nucleic Acids , Humans , Extracellular Vesicles/chemistry , Liquid Biopsy/methods , Biomarkers/analysis , Nucleic Acids/analysis , Cell Death
19.
Curr Treat Options Oncol ; 25(5): 659-678, 2024 May.
Article En | MEDLINE | ID: mdl-38656685

OPINION STATEMENT: Diffuse large B-cell lymphoma (DLBCL) is a curable disease with variable outcomes due to underlying heterogeneous clinical and molecular features-features that are insufficiently characterized with our current tools. Due to these limitations, treatment largely remains a "one-size-fits-all" approach. Circulating tumor DNA (ctDNA) is a novel biomarker in cancers that is increasingly utilized for risk stratification and response assessment. ctDNA is readily detectable from the plasma of patients with DLBCL but has not yet been incorporated into clinical care to guide treatment. Here, we describe how ctDNA sequencing represents a promising technology in development to personalize the care of patients with DLBCL. We will review the different types of ctDNA assays being studied and the rapidly growing body of evidence supporting the utility of ctDNA in different treatment settings in DLBCL. Risk stratification by estimation of tumor burden and liquid genotyping, molecular response assessment during treatment, and monitoring for measurable residual disease (MRD) to identify therapy resistance and predict clinical relapse are all potential applications of ctDNA. It is time for clinical trials in DLBCL to utilize ctDNA as an integral biomarker for patient selection, response-adapted designs, and surrogate endpoints. As more ctDNA assays become commercially available for routine use, clinicians should consider liquid biopsy when treatment response is equivocal on imaging. Incorporating MRD may also guide decision-making if patients experience severe treatment toxicities. Though important barriers remain, we believe that ctDNA will soon be ready to transition from bench to bedside to individualize treatment for our patients with DLBCL.


Biomarkers, Tumor , Circulating Tumor DNA , Lymphoma, Large B-Cell, Diffuse , Lymphoma, Large B-Cell, Diffuse/therapy , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/blood , Lymphoma, Large B-Cell, Diffuse/genetics , Humans , Circulating Tumor DNA/blood , Biomarkers, Tumor/blood , Liquid Biopsy/methods , Disease Management , Translational Research, Biomedical , Precision Medicine/methods , Prognosis , Clinical Decision-Making , Disease Susceptibility
20.
Int J Mol Sci ; 25(8)2024 Apr 20.
Article En | MEDLINE | ID: mdl-38674117

Up to 80% of patients under immune checkpoint inhibitors (ICI) face resistance. In this context, stereotactic ablative radiotherapy (SABR) can induce an immune or abscopal response. However, its molecular determinants remain unknown. We present early results of a translational study assessing biomarkers of response to combined ICI and SABR (I-SABR) in liquid biopsy from oligoprogressive patients in a prospective observational multicenter study. Cohort A includes metastatic patients in oligoprogression to ICI maintaining the same ICI due to clinical benefit and who receive concomitant SABR. B is a comparative group of oligometastatic patients receiving only SABR. Blood samples are extracted at baseline (T1), after the first (T2) and last (T3) fraction, two months post-SABR (T4) and at further progression (TP). Response is evaluated by iRECIST and defined by the objective response rate (ORR)-complete and partial responses. We assess peripheral blood mononuclear cells (PBMCs), circulating cell-free DNA (cfDNA) and small RNA from extracellular vesicles. Twenty-seven patients could be analyzed (cohort A: n = 19; B: n = 8). Most were males with non-small cell lung cancer and one progressing lesion. With a median follow-up of 6 months, the last ORR was 63% (26% complete and 37% partial response). A decrease in cfDNA from T2 to T3 correlated with a good response. At T2, CD8+PD1+ and CD8+PDL1+ cells were increased in non-responders and responders, respectively. At T2, 27 microRNAs were differentially expressed. These are potential biomarkers of response to I-SABR in oligoprogressive disease.


Biomarkers, Tumor , Immune Checkpoint Inhibitors , Lung Neoplasms , Radiosurgery , Humans , Male , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Lung Neoplasms/blood , Lung Neoplasms/radiotherapy , Radiosurgery/methods , Female , Aged , Biomarkers, Tumor/blood , Middle Aged , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Cell-Free Nucleic Acids/blood , Prospective Studies , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/pathology , Aged, 80 and over , Neoplasm Metastasis , Disease Progression , Liquid Biopsy/methods , Leukocytes, Mononuclear/metabolism , Treatment Outcome
...